
• Range queries

• Convex hulls

• Lower bounds

• Planar subdivision search

• Line segment intersection

• Convex polygons

• Voronoi diagrams

• Minimum spanning trees

• Nearest neighbors

• Triangulations

• Collinear subsets

Computational Geometry

• “Algorithmic Geometry”

• Supplemental reading:

Computational Geometry,

An Introduction, by Franco Preparata

and Michael Shamos, 1985

• Shamos founded Computational Geometry

in mid-1970’s with his Ph.D. thesis

• Now multiple conferences and journals

• Fundamental for graphics, gaming,

CAD, motion planning, GIS / GPS,

Computational Geometry

Franco PreparataMichael Shamos

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

• Single preprocessing phase, but many queries

• Query time is more critical than preprocessing time

• Range queries generalize to any dimension

Range Queries

1

05

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Applications:

• Databases

• GIS / GPS systems

• Gaming

• CAD

Range Queries

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: first solve the one-dimensional case!

• 1-D “rectangle” is a linear range / segment

• Preprocessing: sort input data

• Range query is a pair of binary searches

• O(log n) time per query

• O(n) space and O(n log n) preprocessing time

Q: Generalization to 2D?

Range Queries

1 2 3 …4 … ni … … j

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: suffices to solve for origin-based rectangles

 four calls to these solves the general case!

Range Queries

9

3

= - - +4 3
1

3

B

|A| + |B| - |AB|

Inclusion-exclusion

principle:
9

4

3

1

A
AB

|AB| =

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: precompute south-west counts for all regions

• Use four binary searches to find four values

• Example: 6 – 1 – 4 + 1 = 2

• O(log n) time per query

• O(n2) space and O(n2) preprocessing time

Range Queries

6

6

3

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 2 2 2

0 1 1 1 2 2 4 4 4

0 1 1 1 2 2 4 5 5

0 1 1 2 3 5 6 7

0 1 1 2 3 4 6 7 8

0 1 1 2 3 5 7 8 9

3

0

1

1

2

2

3

4

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Other possible space-time tradeoffs:

Preprocessing space query

Naïve: O(1) O(1) O(n)

k-d trees: O(n log n) O(n log n) O(log2n)

Clever: O(n2) O(n2) O(log n)

Range Queries

Generalizations:

• Higher dimensions

• General search window (not rectangular)

• Arbitrary objects (segments, polygons, mixed, etc.)

• Counting vs. reporting

• Containment vs. intersection

• Static vs. dynamic

• Online vs. offline

Range Queries

Definition: a polygon is a closed sequence of vertices

Definition: a simple polygon has no self-intersections

Theorem [Jordan]: a simple polygon partitions the

plane into 3 regions: interior, exterior, and boundary

Definition: convex polygon contains all pairwise

segments (i.e. is the intersection of half-planes)

Definition: convex polygon is the intersection of all

the half-planes containing its vertices

Definition: a polytope is a higher-dimensional polygon

Polygons

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

• Single preprocessing phase, but many queries

• Query time is more critical than preprocessing time

• Point location problem generalizes to any dimension

Point Location

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

Applications:

• Mouse clicking

• GIS / GPS systems

• Motion planning

• CAD

• Graphics

• Gaming

Point Location

Input: polygon and query point

Output: is query point interior to polygon?

“Raycasting” algorithm (based on Jordan’s theorem):

• Consider ray from query point to infinity

• Count segment intersections parity:

odd interior

even exterior

• O(n) time per query

• O(1) space and O(1) preprocessing time

Point Location

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

Convex case:

• O(log n) time per query (binary search)

• O(n) space and O(n log n) preprocessing time

Point Location

Preprocessing:

• Find an interior point p

• Partition into wedges w.r.t p

• Sort wedges by polar angle

Query:

• Find containing wedge

• Test interior/exterior

p

Input: polygon and query point

Output: is query point interior to polygon?

Convex case:

• O(log n) time per query (binary search)

• O(n) space and O(n log n) preprocessing time

Point Location

Preprocessing:

• Find an interior point p

• Partition into wedges w.r.t p

• Sort wedges by polar angle

Query:

• Find containing wedge

• Test interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Point Location

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Worst-case example:

• Θ(n2) space and Θ(n2) preprocessing time worst-case

• O(n) space O(n log n) preproc O(log n) query possible!

Planar Subdivision Search

n/2

n/2

Number of subregions:

≈ (n/2)(n/2) = n2/4 = Θ(n2)

Planar Subdivision Search

A “Simple” Polygon

A “Simple” Polygon

A “Simple” Polygon

A “Simple” Polygon

• Traveling Salesperson Tour

• Optimal is NP-complete

 use TSP heuristics

• Can use Minimum Spanning

Trees (easy to compute)

• Can also use Minimum

Matchings (easy to compute)

• What about colors?

Project Idea: TSP Art

• Convert image to B&W

• Sample image density

• Create pointset

• Run TSP heuristics

• Uncross intersections

Problem: Does every closed simple curve contain

the vertices of an equilateral triangle?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Convex Hulls
Input: set of n points

Output: smallest containing convex polygon

• Generalizes to higher dimensions

• Applications: gaming, collision detection,

graphics, statistics, image recognition, …

Input: set of n points

Output: smallest containing convex polygon

“Jarvis’ march” [1973]:

• h ≤ n convex hull points

• O(n) time per CH point

• O(nh) time, O(n2) worst-case

• Generalizes to higher dimensions

• Parallelizes

Convex Hulls

• Start at point with least x

• Until CH is complete:

• Find next CH point

(with max internal angle)

Input: set of n points

Output: smallest containing convex polygon

“Jarvis’ march” [1973]:

• h ≤ n convex hull points

• O(n) time per CH point

• O(nh) time, O(n2) worst-case

• Generalizes to higher dimensions

• Parallelizes

Convex Hulls

• Start at point with least x

• Until CH is complete:

• Find next CH point

(with max internal angle)

Input: set of n points

Output: smallest containing convex polygon

“Graham’s scan” [1972]:

• O(n log n) time to sort

• O(n) time to scan

• O(n log n) time worst-case

• Does not generalize nor parallelizes

Convex Hulls

• Start at point with least x

• Sort points by polar angles

• Form star-shaped polygon

• Until CH is complete:

Scan next CH candidate

If reflex angle backtrack

Ron Graham

Jarvis’ march compared to Graham’s scan:

• If h < log n Jarvis’ march wins

• If h > log n Graham’s scan wins

Expected CH sizes (uniform distributions):

• square: h = O(log n), r-gon: h = O(rlog n)

• circle: h = O(n1/3), sphere: h = O(n1/2)

E.g., Jarvis’ march in a circle: O(n4/3)

Convex Hulls

Ron Graham

O(n log n) O(nh)

Parallel

meta-heuristic:

O(nmin(h,log n))

QuickHull: (like QuickSort)

• O(n log n) expected time

• O(n2) worst-case time

• Generalizes to higher dim

• Parallelizes

Convex Hulls

Find right and left –most points

Partition points along this line

Find points farthest from line

Eliminate all internal points

Recurse on outside 4 regions

Concatenate resulting CHs

MergeHull: (like MergeSort)

Merging two convex hulls:

• T(n) = 2T(n/2) + n = Q(n log n)

• Generalizes to higher dimensions

• Parallelizes M-gon

L-gon

Convex Hulls

Partition points into two sets

Compute MergeHull of each set

Merge the two resulting CHs

Pick point p with least x

Form angle-monotone chains w.r.t. p

Merge chains into angle-sorted list

Run Graham’s scan to form CH CH(L-gon M-gon)

 (L+M)-gon

Theorem: CH requires Ω(n log n) comparisons.

Proof: Reduce sorting to convex hull:

• Consider arbitrary set of numbers xi to be sorted

• Raise the xi‘s to the parabola (xi, xi
2)

• Compute convex hull of (xi, xi
2)’s

• Sorted order of xi’s is implicit in convex hull

 Sorting takes no longer than convex hull

Convex hull requires Ω(n log n) comparisons

Corollary: Graham’s scan is optimal! O(n log n)

Lower Bound for Convex Hulls

Thomas Cormen Charles Leiserson

Ronald Rivest Clifford Stein

Franco PreparataMichael Shamos

Franco PreparataMichael Shamos

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Point Location

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Planar Subdivision Search

Chan’s convex hull algorithm [1996]:

• Assume we know the CH size m=h

• Time for n/m Grahams: (n/m)O(m log m) = O(n log m)

• Time for Jarvis: m(n/m)O(log m) = O(n log m)

• Total time: O(n log m)

Convex Hulls

Partition points into n/m sets of m each

Compute CH of each set using Graham

Compute m steps of Jarvis on CHs

Timothy Chan

n-vertex

convex

polygon

Theorem: given a point and

n-vertex convex polygon,

the tangents can be found in

O(log n) time (binary search).

Convex Hulls

Timothy Chan

Chan’s convex hull algorithm [1996]:

• m=h time is O(n log h)

• If m too large Graham’s O(n log n) dominates

• If m too small Jarvis’ O(nh) dominates

Q: How can we pick a good m?

Idea: keep increasing m until m>h

• Start with initial m=2

• If m proves too small (<h) square m,

abandon (!) previous work & run again

• i.e. m=2, 22, 24, 28, 216,…, 22t
≥ h for t ⌈log log h⌉

• Time is O(𝑡=1
⌈log log h⌉

n log 22
𝑡
) = nO(𝑡=1

⌈log log h⌉
2𝑡)

= nO(21+log log h) = O(n log h)

• Chan combines two slower algorithms into a faster one!

• Simple, and optimal in both n and h

n/m sets

of m each

Theorem: The convex hull of a simple

polygon can be found in linear time.

Theorem: The convex hull in 3D can be

found in optimal time Q(n log n).

Theorem: The convex hull in d>3 dim

can be found in time Q(n d+1)/2).

Theorem: Identifying the points of the convex hull

(unsorted) requires Ω(n log n) time (even in 2D).

 Ω(n log n) “Hardness” of determining convex hull

vertices is sorting-independent

Convex Hulls

Graham’s scan

3D Jarvis’ march

Convex Hulls

Theorem: Deciding whether all n input points lie

on their convex hull requires Ω(n log n) time.

 Decision “hardness” of convex hull is worse than

sorting (deciding “sortedness” is O(n) time)

Theorem: Dynamic CH maintenance doable

in O(log n) time per arriving point.

Theorem: Dynamic CH maintenance requires

Ω(log n) worst-case time per each arriving point.

Theorem: Dynamic CH maintenance with deletions

can be done within O(log2n) time per point.

Input: two convex polygons

Output: their intersection (polygon)

• Linear time

= O(total # vertices)

• Generalizes to higher dimensions

• Can be used to intersect many convex polygons

• Generalizes to unbounded convex polygonal regions

• Sort both polygons by x

• Find all vertical slices

• Partition into trapezoids

• ∩ trapezoids in each slice

• Stitch ∩’s together

Convex Polygon Intersection

• Sort both polygons by x

• Find all vertical slices

• Partition into trapezoids

• ∩ trapezoids in each slice

• Stitch ∩’s together

Convex Polygon Intersection
(possibly unbounded)Input: two convex polygons

Output: their intersection (polygon)

• Linear time

= O(total # vertices)

• Generalizes to higher dimensions

• Can be used to intersect many convex polygons

• Works for any combination of bounded & unbounded

Convex Polygon Intersection
Input: k convex polygons (possibly unbounded)

n total number of vertices of all k<n polygons

Output: their intersection (polygon)

• Total time is O(n log k)

• Theorem: W(n log k) is necessary for n convex polygon ∩

• Recursively intersect:

polygons 1,..,k/2

polygons k/2+1,…,k

• Intersect both intersections

k/2k/2

k/8 k/8 k/8 k/8 k/8 k/8 k/8k/8

k/4 k/4k/4k/4

1 1 …1 … 1 11

…

…

 On) total

work / level

log k levels

of recursion

k

Input: convex polygon with n vertices

Output: diameter (farthest pair)

Theorem: computing the diameter (farthest pair)

of a convex polygon requires Ω(n) time.

• Naïve algorithm: examine all
𝑛
2

pairs O(n2)

• More efficient: for each point, binary-search

polygon for farthest other point O(n log n)

Convex Polygon Diameter

must look at

every point!

n points on circle

1 point outside circle

“twin peaks”

Input: convex polygon with n vertices

Output: diameter (farthest pair)

Theorem: Diameter is largest distance

between any pair of parallel tangents.

• Linear total time O(n)

• Finds all “antipodal” pairs

• “Rotating calipers” has

lots of applications

Find horizontal max y tangent

Find horizontal min y tangent

Rotate tangents while parallel

Rotate all the way around

Diameter is max separation

Convex Polygon Diameter

Pointset Diameter

Graham’s scan Rotating calipersChan’s CH algorithm

Theorem: The diameter (farthest pair) of a pointset

is equal to the diameter of its convex hull.

Theorem: Finding the diameter of a

pointset requires time Ω(n log n).

Theorem: The diameter of a planar pointset

can be found in optimal time O(n log n).

Theorem: The diameter of a planar pointset

can be found in optimal time O(n log h).

Theorem: The width of a convex polygon

can be found in linear time.

Theorem: The diameter of a simple polygon

can be found in linear time.

Theorem: Element uniqueness (whether any pair

is equal) requires Ω(n log n) time to solve.

Theorem: Element uniqueness (whether any pair

is equal) can be solved in time O(n log n).

Pointset Diameter

Input: set of n points

Theorem: the locus of points closer to any

given point form a convex polygon

• AKA “Dirichlet tessellation”

Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Franco PreparataMichael Shamos

Franco PreparataMichael Shamos

Generalizes to higher dimensions:
Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Generalizes to other metrics:

Lp-dist((x1,y1),(x1,y1))=(|x1-x1|
p+|y1-y1|

p)1/p

Lp-dist(v1,v2) = (|Δx|p+|Δy|p+|Δz|p+|Δw|p+…)1/p

e.g., L1-dist((x1,y1),(x1,y1))=|x1-x1|+|y1-y1|

Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Euclidean metric (L2) Manhattan metric (L1)

Dynamic Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Voronoi Diagram of State Capitals

Voronoi Diagram of U.S. Airports

Voronoi Furniture

Voronoi Furniture

Voronoi Architecture

Voronoi Architecture

Voronoi Architecture

Voronoi Diagrams in Nature

Voronoi Art

Voronoi Art

Voronoi Art

Voronoi Art

Voronoi Art

Voronoi Art

Theorem: A Voronoi cell is unbounded if

and only if it’s point is on the convex hull.

Corollary: The convex hull can be computed

from the Voronoi diagram in linear time.

The Voronoi diagram yields the convex hull “for free”

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Georgy Voronoi

1868-1908

Theorem: Every nearest neighbor of a point

defines an edge of the Voronoi diagram.

Corollary: All nearest-neighbors can be computed

from the Voronoi diagram in linear time.

Voronoi diagram yields all nearest-neaighbors “for free”

Voronoi Diagram Properties

Peter Dirichlet

1805-1859

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: A Voronoi diagram on n points has

at most 2n-5 vertices and 3n-6 edges.

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: The Voronoi diagram enables nearest

neighbor search in O(log n) time, using O(n log n)

preprocessing time, and O(n) space, which is optimal.

Generalizes binary search to 2 dimensions

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: Connecting points of neighboring

Voronoi diagram cells forms a triangulation.

Corollary: A Delanuay triangulation can be computed

from the Voronoi diagram in linear time.

Voronoi diagram yields a triangulation “for free”

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: A Delanuay triangulation maximizes

the minimum angle over all triangulations.

Theorem: A Euclidean minimum spanning tree

is a subset of the Delanuay triangulation.

Corollary: A Euclidean minimum spanning tree can

be computed from Voronoi diagram in linear time.

Voronoi diagram yields an MST “for free”

Thm: Convex hull doable in O(n log n) time.

Thm: Nearest neighbors doable in O(n log n) time.

Thm: Closest pair doable in O(n log n) time.

Thm: Triangulation doable in O(n log n) time.

Thm: Euclidean MST doable in O(n log n) time.

Thm: Convex hull requires Ω(n log n) time.

Thm: Nearest neighbors require Ω(n log n) time.

Thm: Closest pair requires Ω(n log n time).

Thm: Triangulation requires Ω(n log n time).

Thm: Euclidean MST requires Ω(n log n) time).

Thm: Voronoi diagram can be used to solve all

of the above problems in O(n log n) time

(and linear time given the Voronoi diagram).

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Michael Shamos

1947-

Franco Preparata

Michael Shamos

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Input: set of n points

Output: Voronoi diagram

• Discrete case / bitmap:

• Total time is O(bitmap size)

• Time is independent of #points n

• Identifies pixels, not polygons

Voronoi Diagram Algorithms

Expand breadth-first waves

from all points in parallel

Mark expanded pixels

uniquely for each wave

When waves collide,

freeze all collision points

Theorem: Voronoi cell of a point is ∩ of all half-planes

induced by the perpendicular bisectors w.r.t. all other points.

Voronoi Diagrams

Voronoi Diagram Algorithms

Compute Voronoi cell by

intersecting n half-planes

Input: set of n points

Output: Voronoi diagram

• Continuous case / polygons:

• Time per cell is O(n2)

• Total time is O(n3)

Theorem: ∩ of n half-planes is

computable in O(n log n) time.

• Total Voronoi diagram time improves to O(n2 log n)

For each point

Compute Voronoi cell

Voronoi diagram is their union

Theorem [Shamos]: Voronoi diagrams in the

plane can be computed in O(n log n) time.

Idea: divide-and-conquer (like MergeSort)

• Complex merge step

Theorem [Fortune]: Voronoi diagrams in the

plane can be computed in O(n log n) time.

Idea: sweep line using parabolas

• [Fortune] is simpler than [Shamos]

• [Fortune] Generalizes to e.g, disks

Theorem: Voronoi diagrams require

Ω(n log n) time to compute.

Voronoi Diagram Algorithms

Michael Shamos

Steven Fortune

Voronoi Diagram Algorithm [Fortune]

Voronoi Diagram Algorithm [Fortune]

Voronoi Diagram Algorithm [Fortune]

X = 2
X

X
X

X

Problem: Solve the following equation for X:

where the stack of exponentiated x’s extends forever.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: True or false: there are arbitrary long

blocks of consecutive composite integers

(i.e., big “prime deserts”)

Extra Credit: find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that is irrational.

Extra Credit: find a short, induction-free proof.

2

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Does exponentiation preserve irrationality?

i.e., are there two irrational numbers x and y such

that xy is rational?

Extra Credit: find a short, induction-free proof.

Problem: Can an 8x8 board with two opposite

corners missing be tiles with 31 dominoes?

= 31 x ?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: 13 + 23 + 33 + 43 + …+ n3 = ?

?i
1

3

n

i

Extra Credit:

find a short, geometric,

induction-free proof.

Problem: Are the complex numbers closed under

exponentiation ? E.g., what is the value of ii?

