Computational Geometry
» Range queries
» Convex hulls
 Lower bounds N
» Planar subdivision search .
e Line segment intersection =~
» Convex polygons
 \Joronol diagrams
e Minimum spanning trees
 Nearest neighbors
 Triangulations
» Collinear subsets




Computational Geometry

* “Algorithmic Geometry”

* Supplemental reading:
Computational Geometry,
An Introduction, by Franco Preparata
and Michael Shamos, 1985

« Shamos founded Computational Geometry
In Mid-1970’s with his Ph.D. thesis
* Now multiple conferences and journals

« Fundamental for graphics, gaming,
CAD, motion planning, GIS / GPS,

...

Shamos Franco Preparata
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Range Querles

Input: n points (vectors), with preprocessing allowed
Output: number of points within any guery rectangle

1

1

 Single preprocessing phase, but many queries
» Query time 1s more critical than preprocessing time
« Range queries generalize to any dimension



Range Queries

Input: n points (vectors), with preprocessing allowed
Output: number of points within any query rectangle
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Range Queries
Input: n points (vectors), with preprocessing allowed
Output: number of points within any query rectangle
|dea: first solve the one-dimensional case!
* 1-D “rectangle” 1s a linear range / segment
* Preprocessing: sort input data

121314l Til.] [.]] .in

« Range query Is a pair of binary searches
* O(log n) time per query
» O(n) space and O(n log n) preprocessing time

Q: Generalization to 2D?



Range Querles

Input: n points (vectors), with preprocessing allowed
Output: number of points within any query rectangle

3 . . 9 Inclusion-exclusion
. rinciple:
) 3 . . p p 5
1 . ) IAUB| = |A| +|B| - |ANB]
3 — - -
— | 9 3 + 1

Idea: suffices to solve for origin-based rectangles
—> four calls to these solves the general case!



Range Querles

Input: n points (vectors), with preprocessing allowed
Output: number of points within any query rectangle

___________ 0 |11 3 45 1 89
6 0 112 334§ 6| (78
""""" 0 11,2 333 57767
0 1111 2 22 4 5 5
S 0 (1011 222 *4 4
O 000 1 11 2 2/ 2

L J
o ' 000 111 1 11

L J

0O 000 00O O 00

Idea: precompute south-west counts for all regions
 Use four binary searches to find four values
e Example: 6-1-4+1=2 QQOO‘ o

* O(log n) time per query @0
« O(n?) space and O(n?) preprocessing time ~ &°



Range Queries
Input: n points (vectors), with preprocessing allowed
Output: number of points within any query rectangle
Other possible space-time tradeoffs:

Preprocessing  space query

Naive: O(1) O(1) O(n)
k-d trees: O(n log n) O(n log n) O(log@n)
Clever:  O(n?)




Range Querles
Generalizations:
» Higher dimensions
* General search window (not rectangular)
* Arbitrary objects (segments, polygons, mlxed etc.)
e Counting vs. reporting -
 Containment vs. intersection o )
e Static vs. dynamic SRR
e Online vs. offline

@>® /\(DB
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Polygons

Definition: a polygon is a closed sequence of vertices
Definition: a simple polygon has no self-intersections

mnteriot
convex

Theorem [Jordan]: a simple polygon partltlons the B
nlane into 3 regions: interior, exterior, and boundary

non-convex

Definition: convex polygon contains all pairwise
segments (i.e. Is the intersection of half-planes)
Definition: convex polygon is the intersection of all
the half-planes containing its vertices

Definition: a IS a higher-dimensional polygon



Point Location

Input: polygon and query point
Output: Is query point interior to polygon?

nteror
convex

non-convex

» Single preprocessing phase, but many queries
» Query time 1s more critical than preprocessing time
 Point location problem generalizes to any dimension



Point Location

Input: polygon and query point

Output: Is query point interior to polygon?
Applications: I
* Mouse clicking

» GIS / GPS systems
* Motion planning

« CAD
 Graphics
* Gaming
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Point Location

Input: polygon and query point
Output: Is query point interior to polygon?

e)deﬂot «“ (‘,0“\6K

“Raycasting” algorithm (based on Jordan’s theorem):
 Consider ray from query point to infinity
« Count segment intersections parity:

= = .{
odd = interior T
even — exterior 0%;36&00 .
. \
- O(n) time per query 0%
* O(1) space and O(1) preprocessing time



Point Location

Input: polygon and query point
Output: Is query point interior to polygon?
Convex case:

Preprocessing:

 Find an interior point p

e Partition into wedges wW.r.t p
 Sort wedges by polar angle

Query:
 Find containing wedge
e Test interior/exterior

* O(log n) time per query (binary search)
» O(n) space and O(n log n) preprocessing time




Point Location O,
Input: polygon and query point Scbem%dge
Output: Is query point interior to polygon?
Convex case:

Preprocessing:

 Find an interior point p

e Partition into wedges wW.r.t p
 Sort wedges by polar angle

e
6@ N < e d e”
exterior/ wedg

Query: 0003"3‘6{\
» Find containing wedge W&w@ﬁ@‘.‘c&
- - - - coal
e Test interior/exterior ‘{\0‘\6@6&3&00'
P

* O(log n) time per query (binary search)
» O(n) space and O(n log n) preprocessing time



Point Location N,

Input: polygon and query point
Output: is query point interior to polygon?

7

Preprocessing: et 2 =
/
e Sort vertices by x -

<nieniof
* Find vertical slices

» Partition into trapezoids ) \

/7

g

« Sort slice trapezoids by y \\\ \
Query: />
» Find containing slice <\
. Find in slice =

N
* Report interior/exterior \

* O(log n) time per query (two bmary searches)
« O(n?) space and O(n?) preprocessing time




Planar Subdivision Search
Input: polygon and query point

Set of
o ]ngUS

Output: is query point interior to polygon’?

Preprocessing:

e Sort vertices by x

* Find vertical slices

e Partition into trapezoids
» Sort slice trapezoids by y

Query:
 Find containing slice
* Find In slice

 Report interior/exterior
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* O(log n) time per query (two bmary searches)
« O(n?) space and O(n?) preprocessing time




Planar Subdivision SearchOg,
Input: polygon and query point S%r%c-
Output: Is query point interior to polygon?
Preprocessing:
+ Sort vertices by®
* Find vertical slices

e Partition into trapezoids
- Sort slice trapezoids byi¥:

Query:
 Find containing slice
* Find In slice

* Report interior/exterior I
* O(log n) time per query (two binary searches)
« O(n?) space and O(n?) preprocessing time



Planar Subdivision Search
Worst-case example:

P
nierto”
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Number of subregions:
~ (n/2)(n/2) = n?/4 = O(n?)

J

« ®(n?) space and ©(n?) preprocessing time worst-case
« O(n) space O(n log n) preproc O(log n) query possible!




Search
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Planar Subdiv
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A “Simple” Polygon




A “Simple” Polygon




A “Simple” Polygon




A “Simple” Polygon



Project Idea: TSP Art

* Traveling Salesperson Tour
« Optimal i1s NP-complete
—> use TSP heuristics

 Convert image to B&W
« Sample image density

» Create pointset

« Run TSP heuristics
 Uncross intersections

e Can use Minimum Spanning ¢
Trees (easy to compute) ‘
 Can also use Minimum D
\Vatchings (easy to compute ,
« What about colors? GG




Problem: Does every closed simple curve contain
the vertices of an equilateral triangle?

-

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations




Convex Hulls
Input: set of n points

Output: smallest containing convex polygon

* Generalizes to higher dimensions
» Applications: gaming, collision detection,
graphics, statistics, image recognition, ...



Convex Hulls g
Input; set of n points s
Output: smallest containing convex polygon
“Jarvis’ march” [1973]: |

o Start at point with least x
» Until CH Is complete:
 Find next CH point
(with max internal angle)

* h < n convex hull-points—
* O(n) time per CH point

« O(n-h) time, O(n?) worst-
 Generalizes to higher dim
» Parallelizes




Convex Hulls :
Input: set of n points s
Output: smallest containing convex polygo |
“Jarvis’ march” [1973]:

o Start at point with least x
» Until CH Is complete:
 Find next CH point
(with max internal angle)

* h <n convex hull pc
* O(n) time per CH pc

« O(n-h) time, O(n?) worst-case o s L
» Generalizes to higher dimensions 3 "= ..%
e

e Parallelizes



Conve
Input: set of n points

Output: smallest containing convex polygon

“Graham’s scan” [1972]:

o Start at point with least x
» Sort points by polar angles
» Form star-shaped polygon
» Until CH Is complete:
Scan next CH candidate
If reflex angle backtrack

* O(n log n) time to sort
* O(n) time to scan

* O(n log n) time worst-case
 Does not generalize nor parallelizes

X Hulls

j »Fl

/ & :', j:" “‘(“/‘l
Ron Graham

) o
eV "

R 0{{\0%



Convex Hulls
Jarvis’ march compared to Graham’s scan.

Lok
d
. N A
\:, -
R
e - T 5
‘ : 7 i

e * . meta-heuristic: .. * Ron Grafarm
. O(n-min(h,log n)) e |
. / \ \ {\‘5\.\6.
O(n-h) O(n log n) \%}06\;&\\
. i ) .
« If h < log n = Jarvis’ march wins T

« Ifh > log n = Graham’s scan wins s (%" o
Expected CH sizes (uniform distributions):\y@o
e square: h = O(log n), r-gon: h = O(r-log n)

e circle: h = O(n'3), sphere: h = O(nl?)

E.g., Jarvis” march in a circle: O(n*3)



Convex Hulls
QuickHull: (like QuickSort)

~ind right and left —most points
Partition points along this line
~ind points farthest from line
Eliminate all internal points
Recurse on outside
Concatenate resulting CHs

* O(n log n) expected time

* O(n?) worst-case time R
* Generalizes to higher dim I
» Parallelizes I




Convex Hulls _—x
MergeHull: (like MergeSort) .

Partition points into two sets ‘ :
Compute MergeHull of each set
Merge the two resulting CHs

Merging two convex hulls:

Pick point p with least x

\

Form angle-monotone ch%@@%ﬁr.t. P ¢
Merge chains into anglgésorted list

Run Graham’s se@i‘t\o form CH CH(L-gon U M-gon)

« T(n) =2T(n/2) + n = O(n log n) ()on
 Generalizes to higher dimensions
 Parallelizes




ower Bound for Convex Hulls
Theorem: CH requires €(n log n) comparisons.

Proof: Reduce sorting to convex hull:
» Consider arbitrary set of numbers x; to be sorted
« Raise the x;‘s to the parabola (x;, %)

« Compute convex hull of (x;, x)’s o
(E{‘O\J %&0@0%\0
YYO d‘c&\oﬂ \(50& %O{&\ \Q\}«\\
Ay Q o> b
000 C)OQ

e Sorted order of x;’s is imptlicit in convex hull «
= Sorting takes no longer than convex hull , <
— Convex hull requires Q(n log n) comparisons * -
Corollary: Graham’s scan is 1©(nlogn) *
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c . | 33 Computational Geometry

‘ THOMAS H. CORMEN
CHARLES E. LEISERSON

‘ RONALD L. RIVEST

CLIFFORD STEIN

We don't have much time, so we
don't teach them; we acquaint them
with things that they can learn.

\«
w?

INTRODUCTION TO

ALGORITHMS

— Chardes & Leiserssn —

AZ QUOTES

— In this chapter, we look at a few computational-geometry algorithms in two
dimensions, that is, in the plane. We represent each input object by a set of
points {py. P2, Pa....}, where each p; = (x;.¥;) and x;,v; € E. For exam-
ple, we represent an n-vertex polygon P by a sequence {pg. Pr. Pae -e oo Puet)
of its vertices in order of their appearance on the boundary of P. Computational
geometry can also apply to three dimensions, and even higher-dimensional spaces,
but such problems and their solutions can be very difficult to visualize. Even in
two dimensions, however, we can see a good sample of computational-geometry
techniques.

Section 33.1 shows how to answer basic questions about line segments effi-
ciently and accurately: whether one segment is clockwise or counterclockwise
from another that shares an endpoint, which way we turn when traversing two
adjoining line segments, and whether two line segments intersect. Section 33.2
presents a technique called “sweeping” that we use to develop an O(n Ig n)-time
algorithm for determining whether a set of n line segments contains any inter-
sections. Section 33.3 gives two “rotational-sweep” algorithms that compute the
convex hull (smallest enclosing convex polygon] of a set of n points: Graham's
scan, which runs in time O(nlgn), and Jarvis's march, which takes O(nh) time,

\ 4 m‘mwu where / is the number of vertices of the convex hull. Finally, Section 33.4 gives
Ronald Rivest Clifford Stein |




Michael hamos

.,
Franco Preparata

CHAPTER 3
Convex Hulls: Basic Algorithms

The problem of computing a convex hull is not only central to practical
applications, but is also a vehicle for the solution of a number of apparently
unrelated questions arising in computational geometry. The computation of
the convex hull of a finite set of points, particularly in the plane, has been
studied extensively and has applications, for example, in pattern recognition
[Akl-Toussaint (1978); Duda—Hart (1973)], image processing [Rosenfeld
(1969)] and stock cutting and allocation [Freeman (1974); Sklansky (1972);
Freeman—Shapira (1975)].

The concept of convex hull of a set of points $ is natural and easy to
understand. By definition, it is the smallest convex set containing S. Intui-
tively, if § consists of a finite set of points in the plane, imagine surrounding
the set by a large, stretched rubber band; when the band is released it will
assume the shape of the convex hull,

In spite of the intuitive appeal of the convex hull concept, the history of
algorithms to compute convex hulls is illustrative of a general pattern in
algorithmic research. Unfortunately, the simple definition of convex hull
recalled above is not of a constructive nature, Thus, appropriate notions must
be identified that are conducive to algorithm development.

The construction of the convex hull, in two or more dimensions, is the
subject of this chapter; in the next chapter we shall consider applications,
variants, and some related—but inherently different—problems. To avoid
some repetition, it is convenient to develop a suitable framework for the
notions pertaining to convex hulls in arbitrary dimension [Griinbaum (1967);
Rockafellar (1970); McMullen—Shephard (1971); Klee (1966)]; these notions
have very simple specializations in the ordinary plane and space. The next
section is devoted to this task; frequent reference will be made to concepts
introduced in Section 1.3.1.
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CHAPTER 4

Convex Hulls: Extensions and
Applications

This chapter has two objectives. The first is the discussion of variants and
special cases of the convex hull problem, as well as the average-case perfor-
mance analysis of convex hull algorithms. The second objective is the dis-
cussion of applications that use the convex hull. New problems will be
formulated and treated as they arise in these applications. Their variety should
convince the reader that the hull problem is important both in practice and as
a fundamental tool in computational geometry.

4.1 Extensions and Variants

4.1.1 Average-case analysis

Referring to the two-dimensional convex hull algorithms discussed in Section
3.3 of the preceding chapter, we note that Graham’s convex hull algorithm
always uses O(N log N) time, regardless of the data, because its first step is to
sort the input. Jarvis’s algorithm, on the other hand, uses time that varies
between linear and quadratic, so it makes sense to ask how much time it can be
expected to take. The answer to this question will take us into the difficult but
fascinating field of stochastic geometry, where we will see some of the dif-
ficulties associated with analyzing the average-case performance of geometric
algorithms.

Since Jarvis’s algorithm runs in O(hN) time, where A is the number of hull
vertices, to analyze its average-case performance we need only compute E(4),
the expected value of A. In order to do this, we must make some assumption




Point Location N,

Input: polygon and query point
Output: is query point interior to polygon?

7

Preprocessing: et 2 =
/
e Sort vertices by x -

<nieniof
* Find vertical slices

» Partition into trapezoids ) \

/7

g

« Sort slice trapezoids by y \\\ \
Query: />
» Find containing slice <\
. Find in slice =

N
* Report interior/exterior \

* O(log n) time per query (two bmary searches)
« O(n?) space and O(n?) preprocessing time




Planar Subdivision Search
Input: polygon and query point

Set of
o ]ngUS

Output: is query point interior to polygon’?

Preprocessing:

e Sort vertices by x

* Find vertical slices

e Partition into trapezoids
» Sort slice trapezoids by y

Query:
 Find containing slice
* Find In slice

 Report interior/exterior

\/ e
—I.
\

L

/i

yA)
I/ N/}

/

N

nteri©}
e\

b] [ T ry

A

N

* O(log n) time per query (two bmary searches)
« O(n?) space and O(n?) preprocessing time




Search
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Convex Hulls
Chan’s convex hull algorithm [1996]:
e Assume we know the CH size m=h

Partition points into n/m sets of m each
Compute CH of each set using Graham
Compute m steps of Jarvis on CHs

Theorem: given a point and
n-vertex convex polygon,
the tangents can be found in
O(log n) time (binary search).

» Time for nms: (n/m)-O(m log m) = O(n log m)
* Time for Jarvis: m-(n/m)-O(log m) = O(n log m)
» Total time: O(n log m)




Convex Hulls
Chan’s convex hull algorithm [1996]:

* m=h = time 1s O(n log h)
 [f m too large — Graham’s O(n log n) dominates
* If m too small = Jarvis’ O(n-h) dominates
Q: How can we pick a good m?
|dea: keep Increasing m until m>h
o Start with initial m=2
* If m proves too small (<h) square m,

labandon (1) previous work|& run again * ' . _
. i.e. m=2, 22,24 28 216 22" > for t <[log log h] :]!Tnﬁgh
* Time is O(Z?:flog " log Zzt) = n-O(Zngf log h],%t)

= n-O(21loglog ) = O(n log h) '\%\\

 Chan combines two algorithms intg<a taster one!
» Simple, and optimal in both n and Qoe\‘b

Timothy Chan




Convex Hulls <,

Theorem: The convex hull of a simple A —
polygon can be found in linear time. .

Graham’s scan

Theorem: The convex hull in 3D can be
found in optimal time ®(n log n).

Theorem: The convex hull in d>3 dim
can be found in time @(n L@+/2)),

3D Jarvis’ march

Theorem: ldentifying the points of the convex hull
(unsorted) requires Q(n log n) time (even in 2D).

— Q(n log n) “Hardness” of determining convex hull
vertices Is sorting-independent



Convex Hulls

\,

Sy
Theorem: Deciding whether all g@ﬁput points lie
on their convex hull é%qﬁires Q(n Iog n) time.

— Decision “hardness” of convex Ws worse than
sorting (deciding “sorteglg,e@?” is O(n) time)

Theorem: Dynamic CH maintenance doable
In O(log n) time per arriving point.

Theorem: Dynamic CH maintenance requires
Q(log n) worst-case time per each arriving point.

Theorem: Dynamic CH maintenance with' deletions
can be done within O(log?n) time per point.



Convex Polygon Intersection

Input: two convex polygons
Output: their intersection (polygon)

o Sprt both po_lygon_s by X 4/////\
» Find all vertical slices = L —
e Partition into trapezoids [
 ( trapezoids in each slice
» Stitch M’s together
. . 17
* Linear time |~ Py
= O(total # vertices) _ || /
- Generalizes to higher dimensions e

 Can be used to Intersect many convex polygons
 Generalizes to unbounded convex polygonal regions




Convex Polygon Intersection

Input: two convex polygons (possibly unbounded)
Output: their intersection (polygon)

* Sort both polygons by x /

 Find all vertical slices = | -
e Partition Into trapezol —

7010ds In each slice q .
e Stitch M’s together

 Linear time Y

= O(total # vertices) =
» Generalizes to higher dimensions
 Can be used to Intersect convex |
« Works for any combinatio T bounded




Convex Polygon Intersection

Input: k convex polygons (possibly unbounded)
n total number of vertices of all k<n polygons
Output: their intersection (polygon)

» Recursively intersect:
polygons 1,..,k/2 &
polygons k/2+1,....k

e Intersect both Intersections

k )

k2 ki2 > log k levels

k/4 k/4 k/4 k/4 of recursion
.k/8 k/8 | k/8 | k/8 | k/8|k/8|k/8 k/8. — O(n) total

work / level

111)1]1].. ...11!
* Total time Is ©(n log k)
« Theorem: Q(n log k) 1s necessary for n convex polygon N




Convex Polygon Diameter
Input: convex polygon with n vertices

Output: diameter (farthest pair)
Theorem: computing the diameter (farthest pair)
of a convex polygon requires €(n) time.

A
G
5o,
n points pon circle ‘@)
1 point outside circle \_/A
« diameter farther
= must look at
every point! .
“twin peaks”

 Naive algorithm: examine all (121) pairs = O(n?)

» More efficient: for each point, binary-search
polygon for farthest other point = O(n log n)




Convex P Iygob Diameter
e

Input: convex polygon with n vertices ipers

Output: diameter (farthest pair) gl

Theorem: Diameter iIs largest distance HeNj
netween any pair of parallel tangents.

~ind horizontal max y tangent
-ind horizontal min y tanger
Rotate tangents while parallel
Rotate althe way around
Dlameter IS max separation

| inear total time O(n)

* Finds all “antipodal” pairs
* “Rotating calipers” has
lots of applications
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The Rotating Calipers: An Efficient, Multipurpose, Computational Tool

Godfried T. Toussaint
New York University Abu Dhabi
United Arab Emirates
gt42(@nyu.edu

ABSTRACT

A paper published in 1983 established that the rorating
calipers paradigm provides an elegant, simple, and yet
powerful computational tool for solving several
geometric problems. In the present paper the history of
this tool is reviewed, and stock is taken of the rich
variely of computational two-dimensional problems
and applications that have been tackled with it during
the past thirty years.

KEYWORDS

Rotating calipers, design and analysis of algorithms,
computational  geometry, geometric  complexity,
computer graphics, computer vision, combinatorial
optimization, statistics

1 INTRODUCTION

The rotating calipers paradigm constitutes a
powerful, simple, elegant, and computationally
efficient tool that can solve a wide variety of
geometric problems in practice. The basic idea
first appeared in the 1978 Ph.D. thesis of Michael
Shamos, where it was applied to the computation
of the maximum distance between the elements of
a convex set: the diameter of a convex polygon in
the plane [40]. Later 1 coined the name “Rotating
Calipers” for this procedure, and generalized it in
a number of ways to solve several other geometric
problems. In 1983 1 presented some of these
results at an IEEE conference in Athens, Greece
[46]. Since then the rotating calipers paradigm has
been generalized further to solve other problems
in two as well as three dimensions. In the present
paper the thirty-year history of this tool is
reviewed, focusing on the progress made with it
on geometry problems and applications, in two-
dimensional space.
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2 THE ROTATING CALIPERS

The elegant and simple algorithm that appeared in
Shamos’ thesis [40], showing that the diameter of
a convex m-sided polygon may be computed in
O(n) time in the worst case, resembles rotating a
pair of calipers through 360°, once around the
polygon. This concept is illustrated in Fig. 1,
which contains a convex polygon, and its two
horizontal lines of support (lower and upper) at
vertices p; and p;, respectively. Note that the lines
of support are directed, as indicated by their
arrows. This permits the specification of the
direction of rotation, so that if the lines are rotated
in a clockwise direction while being pivoted about
vertices p; and p;, the angles ¢; and @, that the lines
make with vertices py1 and py. 1, will decrease.

Figure 1. The rotating calipers.
2.1 The Diameter of a Convex Polygon

The diameter of a polygon P is the maximum
distance between a pair of points in P. Since P
contains an infinite number of points, searching all
of them is out of the question. To obtain an
efficient algorithm we need a characterization of
the diameter in terms of a finite subset of the
points in P. It is easy to show by a contradiction
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argument, that the diameter of / is determined by
a pair of vertices of P. Therefore the diameter may
be calculated by examining the distances between
all the pairs of vertices of P, and selecting the
maximum distance. However, this naive (brute
force) algorithm requires a number of operations
that grows as the square of the number of vertices
in the polygon. A more fruitful characterization
narrows the set of candidates to be searched down
to linear size. Several approaches have been tried
in the past in order to speed up diameter-finding
algorithms [5], and some characterizations have
proved to be incorrect [2]. However, a valid
characterization was obtained by Shamos [40] via
the pairs of vertices, such as p, and p, in Fig. 1.
These vertices are antipodal, meaning that they
admit parallel lines of support. The diameter of a
polygon is determined by two antipodal vertices.
Furthermore, a polygon with # vertices has O(#)
antipodal pairs, assuming that all the vertices of P
that have an angle of 180° have been removed,
which is a straightforward matter. The rotating
calipers provide a simple O(n) procedure for
searching all the antipodal pairs to find the
maximum. The idea is to place a pair of parallel
lines of support in any orientation, say horizontal,
as in Fig. 1, and then “rotate” the lines, while
keeping them as support lines of the polygon, until
they are horizontal again. Such a procedure will
visit all pairs of antipodal vertices. The crucial
observation that makes this seeming infinite
continuous process finite is that the rotation can
hop from vertex to vertex. Observe in Fig. 1, that
as the two lines of support rotate, the vertices p;
and p; maintain their antipodality property until
one of the lines lies flush with an edge of P. In
Fig. 1, ¢ is smaller than ¢, and thus the line
advances from p; to p,. identifying the next
antipodal pair p; and p;.1. At each step all that is
needed is a comparison of two angles to determine
which of the two is smaller, which can be done in
constant time,

2.2 TheIWidth of a Convex Polygonl

The width of a polygon P is the minimum distance
between a pair of parallel lines of support of P. As
with the diameter definition, to obtain an
algorithm, the width must be characterized by a

ISBN: 978-0-9891305-5-4 ©2014 SDIWC

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

finite subset of the lines of support that can be
searched efficiently. The following property yields
such a characterization. Let p; and p; be two
vertices of the convex polygon that admit parallel
lines of support, and have internal angles less than
180°, as in the example of Fig. 1. If no edge of P
lies on the support lines, there exists a preferred
direction of rotation for the support lines such that
their separation distance decreases. This implies
that the width of the polygon is characterized by a
vertex and an edge (a vertex-edge pair) that are
antipodal, i.e., such that one of the lines of support
lies flush with an edge, as shown in Fig. 2. This
characterization of the width of a convex polygon
found application to the segmentation of plane
curves in the work of Ichida and Kiyono [21]. The
characterization has also led to several algorithms
for computing the width of a polygon. A useful
property in this regard is the fact that for a line
that contains any edge of a convex polygon P, the
perpendicular distance between the line and the
vertices of P, as they are traversed in order,
defines a wnimodal function [45]. Kurozumi and
Davis [24], and Imai and Iri [22], independently
proposed algorithms for computing the width of a
convex polygon by visiting each edge of the
polygon, and for each edge searching for the
vertex furthest from it (in a perpendicular sense)
Since this distance function is unimodal the
algorithms in [22] and [24] apply binary search to
locate these vertices, for each edge of P. This
approach results in algorithms with O(n log »)
worst-case time complexities.

Figure 2. The rotating calipers and the width of P.

Houle and Toussaint [20] show that an O(n) time
algorithm is achievable by avoiding binary search
altogether, and using the rotating calipers instead.
To initialize the algorithm, a line of support is
constructed through any edge, such as p;.; and p; in
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Fig. 2, and the vertex furthest from this line is
found (p, in Fig. 2). At each step during the
rotation of the lines, the succeeding edge selected
is the one that makes the smaller angle with its
line of support. This process yields the vertex
opposite the edge in only constant time

2.3 ThelMinimum-Area Enclosing Rectanglel

The algorithm described in the previous sub-
section, for computing the width of a polygon with
the rotating calipers, represents an application of
the original calipers that use two parallel lines of
support to compute the diameter, to a different
problem. However, the rotating calipers tool itself
has also been generalized in several ways. One
generalization introduced in [46] uses more than
two rotating lines of support. One nice example
uses four lines of support to tackle a problem that
arises in the areas of image processing and
computer vision [11], [39], [50]-[52], optimal
packing and layout problems in manufacturing
[13], and automatic tariffing in goods traffic [18].
The problem is that of computing the minimum-
area enclosing rectangle of a convex n-sided
polygon. The usefulness of this rectangle in
packing problems is obvious, but it also has
applications to shape analysis. For example, the
rectangularity of a shape may be measured by the
difference in the areas of the shape and its smallest
enclosing rectangle [39]. Freeman and Shapira
[13] showed that the smallest rectangle must have
one of its four edges flush (collinear) with an edge
of the polygon, as illustrated in Fig. 3. The
algorithm they propose involves visiting every
edge of P, such as edge [p.1 p] in Fig. 3, and
locating the three associated extreme vertices that
complete the enclosing rectangle, such as p,, p; and
ps in Fig. 3. Their algorithm inspects all the
vertices of P to find these three extreme vertices,
leading to a total computational complexity of
O@Y). If on the other hand each of these extreme
vertices is located in O(log n) steps using binary
search, instead of a linear scan (which is valid due
to the unimodality property of the distances
involved [45]), then the solution may be found in
O(n log n) time. However, the rotating calipers
with four lines of support solves this problem
elegantly in O(n) time, as follows. To initialize the
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procedure any edge of the polygon is selected as
the base of a candidate for the smallest enclosing
rectangle, and the three extreme vertices are found
by a linear scan of all the vertices, as in [13]. The
rest of the algorithm proceeds in a manner similar
to that used in the algorithm for computing the
width of the polygon, except that here the four
lines of support are rotated by the smallest of the
four angles that the lines make with their
succeeding clockwise edges, as shown in Fig, 3. In
this way every edge of the polygon generates its
candidate rectangle as the support lines make a
full revolution around the polygon. Furthermore
each candidate rectangle is generated in constant
time, resulting in a total time complexity of O(#).
An alternate approach to solve this problem in
O(n) time, that uses a data structure known as a
star, is described in [47].

Pi

Figure 3. The minimum-area enclosing rectangle.

In closing this sub-section it is worth noting that
the rotating calipers can also be used to find
minimum-area squares [10], minimum-perimeter
enclosures [28], and the densest double-lattice
packing of a convex polygon [29].

2.4 The Maximum Distance Between Two
Convex Polygons

The maximum distance between two convex
polygons, P and (O, arises in several applications
including pattern recognition, cluster analysis, and
unsupervised learning [12]. It is defined as the
largest distance determined by a point in P and a
point in (). As with the diameter of a single
polygon, the search for the maximum distance
may be restricted to the vertices of P and O,
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denoted by p1, p2, ..., pooand q1, G2, ..., Gn,
respectively. This maximum distance between P
and (J is given by:

duax(P,0) = max{d(p, g)}, i, j=1,2, ...,n, (1)

where maximization is done over all 7 and j, and
d(p,, p;) is the Euclidean distance between p, and
p;. Bhattacharya and Toussaint [6] showed that
two sets of points may be partitioned into eighteen
subsets such that the maximum distance between
the two sets is equal to the largest of the eighteen
diameters of each of these subsets. Furthermore,
the diameter of each subset may be computed with
the rotating calipers algorithm applied to their
convex hulls. If the two sets are convex polygons,
their algorithm runs in O(#) time. However, a
simpler and direct O(#) time algorithm for the case
of convex polygons was later discovered by
Toussaint and McAlear [49]. Their algorithm
follows from the generalization of the notion of an
antipodal pair of points for a single polygon, as
illustrated in Fig. 4
Pi

Pi-1

Figure 4. The maximum distance between two convex
polygons is determined by an antipodal pair between them.

An antipodal pair between the sets P and 0, is
defined as a pair of vertices p, € P and g, € ), such
that they admit parallel lines of support of / and
0O, at p, and ¢, respectively, with the added
restrictions that the support lines are oriented in
opposite directions, and each polygon lies to the
right of its support line. Note that both polygons
need not be contained in the parallel strip defined
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by the two support lines, as is the case for the
configuration in Fig. 4. If one polygon is smaller
than the other, or if it lies inside the other, a
polygon may protrude outside this strip. It is
shown in [49] that the maximum distance between
the sets is determined by an antipodal pair
between the sets. There are only a linear number
of such pairs, and they can be searched in O(n)
time by rotating the calipers in the same manner as
was done in the diameter algorithm. In Fig. 4, the
pair p; and ¢; are one candidate pair, and the next
candidate pair is obtained in O(1) time by rotating
the calipers in a clockwise manner by the smaller
of the angles &, and ¢,.

2.5 Minkowski Sum of Two Convex Polygons

Consider two points » and s in the plane, denoted
by r(x.y,) and s(x.y,), specified by their x and y
coordinates. The Minkowski sum (also called the
vector sum) of r and s is the new point #(x,)),
where x;, = x,+x, and y; = y+y,. The Minkowski
sum of two convex polygons P and (0, denoted by
P @ @, is the set of points obtained by the
Minkowski addition of each and every point in P
with each and every point in (). The Minkowski
sums of polygons in the plane, and polyhedra in
space, find application in spatial planning
problems in the field of robotics [25], [26]. The
Minkowski sum of two convex polygons, P and O
may be characterized in terms of their vertices,
thus making it computable. In particular, P @ Q is
a convex polygon, and has at most 2 vertices,
which are Minkowski sums of the vertices of P
with those of Q. This characterization implies the
following algorithm: first compute all ©(#%)
pairwise Minkowski additions of the vertices of P
and O, and then compute the convex hull of the
resulting set. Using an efficient O(n log n) time
convex hull algorithm, such as Graham’s
algorithm [15], yields an O@* log ) time
algorithm for computing the Minkowski sum.
However, a much faster O(n) time algorithm may
be obtained by exploiting a characterization of the
Minkowski sum in terms of a modification of the
notion of an antipodal pair of vertices. Two
vertices p, € P and ¢; € O are defined as being co-
podal if, and only if, they admit parallel directed

218




lines of support of 7 and (), at p, € P and ¢, € O,
respectively, such that the support lines are
oriented in the same direction, and each polygon
lies to the right of its support line, as illustrated in
Fig. 5. The following characterization of the
Minkowski sum of P and O may now be obtained:
the vertices of 7 @ () are the Minkowski sums of
co-podal pairs of vertices of  and (. This
characterization permits the computation of P @
() by rotating the calipers in the manner as shown
in Fig. 5, where the pair p; and ¢; is a candidate
pair of vertices to be summed. The subsequent
candidate pair is obtained in O(1) time by rotating
the calipers in a clockwise manner by the smaller
of the angles ¢; and ¢, Let z; = p, @ ¢, denote a
vertex of P @ () that has been computed. Then the
succeeding vertex zyi = pi @ ¢ if @, < 8,z =
Pint @ gi if 0, < g, and zp = o B g it 0 = @
Since there are no more than 2n vertices in P @
it follows that O(#1) time suffices to compute it.

Figure 5. The Minkowski sum of two convex polygons.

2.6[The Convex Hull of Two Convex Polygonsl

There exist applications where it is required to
compute the convex hull of two convex polygons.
For example, the divide and conquer approach to
computing the convex hull of a set of # points in
the plane repeatedly (recursively) merges the
convex hulls of two smaller subsets of the points
[33]. A linear time merge step is sufficient to yield
an algorithm for the convex hull of the set that
runs in O(n log #) time. The convex hull of two
convex polygons, / and (), consists of three types
of edges: edges of P, edges of O, and edges that
connect vertices of 7 with those of (). The latter
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edges are called bridges (also common tangents).
In Fig. 6 the dashed line Lz that supports polygons
P and O at vertices p, and g, respectively,
determines a bridge of the convex hull of P and O.

Lo Lp

lg

Figure 6. The convex hull of two convex polygons.

The convex hull of two convex polygons may
therefore be computed by rotating clockwise two
directed lines of support (one on each polygon)
oriented in the same direction, such that each
polygon is to the right of its line of support, as was
done for the Minkowski sum problem. Whenever
the two lines of support are not collinear
(overlapping) one of them lies to the left of the
other. For instance, in Fig. 6, line Lg lies to the left
of Lp. Later in the process line Lp will lie to the
left of Lo. This implies that the lines must, at some
time during the rotation, completely overlap, and
whenever they do so they identify a bridge. Thus,
the convex hull of the two polygons may be
obtained by rotating the calipers a full revolution,
and at each step outputting the vertex of either P
or (), that lies on the leftmost supporting line.
Since each vertex of P and (Q is visited only once,
and there are O(n) bridges, O(#) time suffices for
the entire computation.

The common tangents between two convex
polygons have been computed with the rotating
calipers in the context of solving special cases of
the travelling salesperson problem (TSP) in which
there are nested convex obstacles [1].
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2.7|Intersecting Two Convex Polygonsl

Computing the intersection of two convex
polygons is a fundamental operation that occurs in
many applications. For example, the divide and
conquer approach to computing the intersection of
a set of m half-planes, repeatedly merges the
intersections of two smaller subsets of the half-
planes, which are (perhaps unbounded) convex
polygonal sets [34]. A linear-time algorithm for
intersecting two convex polygons, that uses the
slab method, was described by Michael Shamos in
his thesis [40], which leads to an O(n log n) time
algorithm for the half-plane intersection problem.
An alternate O(#) time algorithm was proposed by
O’Rourke [31]. A transparently clear O(n)
algorithm along with an easy proof of correctness,
that uses the rotating calipers was presented in
[44]. The algorithm exploits the fact that if two
convex polygons intersect, then there exists an
intersection point corresponding to each bridge in
the convex hull of the two polygons, as illustrated
in Fig. 7, where the dashed line Lz identifies a
bridge determined by vertices ¢, € O and p, € P,
and x denotes the intersection point corresponding
to this bridge. The algorithm in [44] first
determines if the two polygons intersect. If they
do then the rotating calipers are used to find the
convex hull as described in Sub-section 2.6, after
which for each bridge the corresponding
intersection point is found by a simple step-down
procedure along the convex chains searching for
the two intersecting edges.

Figure 7. A bridge and its correspending intersection peint x
of two intersecting convex poly gons.
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2.8 The Critical lines of Support of Two

Convex Polygons

Given two disjoint convex polygons /7 and (), the
critical support lines are the two lines that separate
P and Q, such that they are both support lines for
P and Q. In Fig. 8 the two critical support lines, /.p
and Lp, are the dashed lines. One line contains
vertices p,1 and ¢, and the other contains p,; and
¢;-1. Intuitively, the two critical support lines may
be obtained by rotating any line that separates the
two polygons, in clockwise and counterclockwise
directions as much as possible, while maintaining
the separability of the two polygons. Critical
support lines find application to a variety of
problems, some of which are described in the
following subsections. For two convex polygons
they can be computed in linear time using the
rotating calipers in a manner similar to that of
computing the maximum distance, by initially
placing the two parallel lines oriented in opposite
directions such that each polygon is to the right of
its support line, as in Fig. 4. During the rotation
phase of the calipers the critical support lines are
detected each time that both support lines are
collinear (overlap each other), as in Fig. 8.

Figure 8. The two critical support lines (dashed) determined
by two disjoint convex polygons,
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2.9 The Widest Separating Strip Between Two
Convex Polygons, and Machine Learning

In the context of pattern classification and
machine learning, two polygons  and () may be
thought of as regions in a feature space that
enclose points of the training data for a two-class
discrimination problem. Any separating line then
is a linear classification rule that can be used to
classify future patterns (points) depending on
whether they lie on one side or the other of this
line. In order for the classifier to make more
confident decisions it is desired to pick the
separating line that is furthest from the two
polygons. Such a line may be chosen as the
centerline of the widest empty strip that separates
the polygons. Such classifiers are referred to as
large-margin classifiers [14], (also wide separation
of sets [19]) and make up the geometric backbone
of support vector machines [27]. For the case of
two planar convex polygons the widest empty
strip is determined by either one vertex from each
polygon, or by a vertex of one polygon and an
edge of the other. Furthermore, this strip may be
detected when the support lines are oriented in
between the directions of the two critical support
lines, and may be found in O(n) time with the
rotating calipers.

The widest empty strip problem is closely related
to the problems of fitting lines to data [36], finding
transversals of sets [4], and linear approximation
of objects [37], [38], all of which have been
solved efficiently using the rotating calipers.

2.10 The Grenander Distance Between Two
Convex Polygons

Ulf Grenander [16] proposed that the distance
between two convex polygons be measured by
comparing the lengths of the connecting segments
of their critical support lines, to the lengths of the
polygonal chains spanned by these segments. To
be more precise let the critical support lines be
supported at p; and p, in P, and g; and ¢, in O, and
refer to Fig. 9. The supporting vertices of the
critical support lines partition the convex polygons
into two polygonal chains: the imner chains facing
the intersection point of the support lines, and the
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complementary outer chains. The supporting
chords of P and () are the line segments that
connect ¢, to p; and p, to g,, shown as bold red line
segments in Fig. 9. The Grenander distance is
defined as the sum of the lengths of the supporting
chords, less the sum of the lengths of all the edges
of the polygons that belong to the inner chains.
Clearly, once the critical support lines have been
computed with the rotating calipers, O(n) time
suftices for the computation of the lengths of the
chords and chains, and therefore the Grenander
distance may be computed in O(r) time.

Figure 9. The Grenander distance between two convex
polygons.

l2.11 Optimal Strip Separation in Medical

Imaging and Solid Modeling

In several contexts such as medical imaging it is
required to construct a solid model by stitching
parallel polygonal slices together. A problem
arises during the interpolation when the solid
object is bounded by a single contour in one slice,
and two contours in the adjoining slice. The
computational geometric problem that results is
the following [3]. Given two linearly separable
polygons / and (), and a third convex polygon R,
it is required to compute the separating strip
between P and (, that covers the largest area of R.
Barequet and Wolfers [3] present a linear-time
algorithm for computing this optimum strip using
the rotating calipers. They also consider the case
when the polygon R is not convex, but in this case
the running time of their algorithm is quadratic in
the size of the input.
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2.12 Aperture Angle Optimization for Visibility

Problems in Graphics and Computer Vision

In several disciplines such as computer graphics,
computer vision, robotics, operations research,
visual inspection, and accessibility analysis in the
manufacturing industry, the notion of visibility is
fundamental. Often models assume that a camera
can see in all directions, in effect idealizing the
camera’s aperture angle to 360°. In a more realistic
model the aperture angle is much smaller than
360° Furthermore, if the camera is movable, it is
desirable to compute the maximum and minimum
aperture angles that the camera may need as it
travels in a constrained space. Let P and  be two
disjoint convex polygons in the plane. For a given
a point x in P, the aperture angle at x with respect
to Q is defined as the angle of the cone with apex
at x, that contains O, and has its two rays that
emanate from x tangent to (). The critical lines of
support play singular roles in computing the
extreme aperture angles, and may be efficiently
computed with the rotating calipers [7].

l2.13 Wedge Placement Optimization Problemsl

Wedge placement optimization problems arise in
several contexts such as visibility with bounded
aperture angles, and layout design of parts in stock
cutting for manufacturing. A wedge # may be
thought of simply as an unbounded cone with a
fixed angle ¢ at its apex. Given an n-vertex
polygonal region, such as R in Fig. 10, we are
interested in computing the entire region where a
camera (the apex of the cone) with aperture angle
¢, may be positioned so that it is as close as
possible to R Such a region is bounded by a
concatenation of arcs (called the wedge cloud)
determined by the apex of the cone as it travels
around R maintaining contact with R. Fig. 10
shows three points on the cloud, x;, x; and x; which
are camera locations with a fixed aperture angle 6.
The original rotating calipers can be generalized
so that the lines of support form any fixed angle to
each other. Teichmann [41] used such a
generalization of the calipers to compute the
wedge cloud of a convex polygon in O(r) worst-
case time. Note that to maintain contact with the
polygon R, a wedge must both rotate and translate.
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Figure 10. Wedge fitting and the wedge cloud.

2.14 Nonparametric Decision Rules

In the nonparametric discrimination problem we
are given training data that belong to different
classes, and it is desired to classify new incoming
data into their respective classes. Jean-Paul
Rasson and Grandville [35] proposed a geometric
approach to the design of such a decision rule.
Consider the two-dimensional, two-class problem,
in which the classes are linearly separable, and
refer to Fig. 11. As part of the training phase of
the classifier, the convex hulls are computed and
stored for each class. These convex hulls are the
convex polygons P and O in Fig. 11, colored light
green and light blue, respectively. The decision
rule for a new incoming pattern X is as follows. If
X lies in P (or () it is classified as belonging to
class P (or Q). If X lies outside both polygons it is
classified to the class associated with the nearest
polygon, where nearest is defined in terms of the
area distance between X and each of the polygons.
More precisely, the distance between X and O is
the absolute value of the difference between the
area of polygon O and the area of the convex hull
of Q U X Similarly, the distance between X and P
is the absolute value of the difference between the
area of polygon P and the area of the convex hull
of P U X, These areas are colored dark blue and
dark green, respectively. In this example the dark
green area is smaller than the dark blue area, and
therefore X would classified as belonging to class
P. The four lines that connect X to the polygons
are critical support lines between X and the
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polygons, where X may be considered as a
degenerate single-vertex polygon, and may be
computed in linear time with the rotating calipers.

Figure 11. A geometric non-parametric decision rule.

2.15 Nice Triangulations and Quadrangulations

of Planar Sets of Points

A convex polygonal amnulus is the region in
between two properly nested convex polygons,
such as the blue shaded region consisting of the
polygon QO less the interior of the green shaded
polygon P shown in Fig. 12. This region admits a
very simple triangulation by means of the rotating
calipers [43]. A triangulation of a polygonal
region is a partition of the region’s interior into as
many triangles as possible, obtained by inserting
interior edges (diagonals) only between pairs of
vertices, without allowing any edges to cross each
other. For the annulus the calipers work in a
similar manner as in the convex hull problem.
Initially two parallel lines of support, oriented in
the same direction, are constructed through the
vertices of P and O with lowest y-coordinates, so
that the polygons lie to the right of the lines (Fig.
12). As the calipers are rotated clockwise, the
pairs of vertices that come into contact with the
lines of support are connected with an edge. The
first few edges connected by this algorithm are
shown in red. In general a region admits many
triangulations, some of which have long edges,
very acute triangles, or other properties deemed
undesirable for some applications. One attractive
property of the triangulation of the annulus
obtained with the rotating calipers algorithm is
that the triangulation tends to be nice, in the sense
that the resulting triangles tend to be nearly
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regular. Furthermore, the method can be applied to
more general problems such as obtaining nice
triangulations of sets of points. One way of doing
this is to first compute all the convex layers of the
set [9], which yields a nested collection of annuli,
each of which can be triangulated with the rotating
calipers [42]. Another method involves first
computing a spiral polygonal chain spanning the
points [23], and then triangulating this spiral with
the rotating calipers [42]. This latter triangulation
also has the added nice property that it is
serpentine, i.e., its dual graph is a chain.

%+3
Q
Pi2
qj+2 P

Pis1

%1\ 8P

¢j //
9

Figure 12. Triangulating a polygonal convex annulus.

3 CONCLUSION

This paper has focused on extensions of the
rotating calipers, and their applications to a variety
of geometric problems in the plane. The problem
of computing the minimum distance between sets
is conspicuously absent. This is because it appears
difficult to crack it with the rotating calipers [48].
The rotating calipers have also been generalized to
work on surfaces such as spheres and cones [17],
and three-dimensional space, where supporting
planes, rather than supporting lines, are rotated
[8], [30]. However, a survey of this topic is
beyond the scope of this paper, but will be
forthcoming in the near future. Finally, the reader
is referred to the web page and thesis of Hormoz
Pirzadeh [32], for details of some proofs, and
animation applets that help to visualize several
algorithms that have been described in this paper.
http://cgm.cs.mcgill .ca/~orm/welcome.html
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Pointset Diameter

Theorem: The diameter (farthest pair) of a pointset
IS equal to the diameter of its convex hull.

Theorem: Finding the diameter of a %

pointset requires time Q(n log n).

heorem: The diameter of a planar pointset
can be found in optimal time ©(n log n).

Theorem: The diameter of a planar pointset

can be found in optimal time ©(n log h).

=L

Graham’s scan Chan’s CH algorithm Rotating calipers



Pointset Diameter

heorem: The width of a convex polygan g

can be found in linear time. 4) ,

Theorem: The diameter of a simple polygon
can be found in linear time.

Theorem: Element uniqueness (whether any pair
IS equal) requires Q(n log n) time to solve.

\
Theorem: Element unigueness (\/\@ﬁ%ér any pair
is equal) can be solved %@ﬁne O(n log n).



Voronol Diagrams
Input: set of n points

heorem: the locus of points closer to any
given point form a convex polygon

« AKA “Dirichlet tessellation”

Peter Dirichlet
1805-1859

-

Georgy Voronoi
1868-1908
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204 5 Proximity: Fundamental Algorithms

rence relation (5.2) has solution P(N,d) = O(Nlog N). This computational
work is of the same order as that of the initial presorting. So we have

Theorem 5.6. The determination of a closest pair of points in a set of N points in
E* can be completed in time O(Nlog N), and this is optimal.

5§The Locus Approach to Proximity Problems:
®  The Voronoi Diagram

While the previous divide-and-conquer approach for the closest-pair problem
is quite encouraging, it even fails to solve the ALL NEAREST NEIGHBORS
problem, which would seem to be a simple extension. Indeed, if we try to set up
the analogous recursion for ALL NEAREST NEIGHBORS, we find that the
natural way of splitting the problem does not induce sparsity, and there is no
apparent way of accomplishing the merge step in less than quadratic time. On
the other hand, a valuable heuristic for designing geometric algorithms is to
look at the defining loci and try to organize them into a data structure. In a
two-dimensional formulation, we want to solve

ProsLEM P.8 (LOCI OF PROXIMITY). Given a set S of N pointsin the plane,
for each point p; in S what is the locus of points (x, y) in the plane that are
closer to p; than to any other point of S?

Note that, intuitively, the solution of the above problem is a partition of the
plane into regions (each region being the locus of the points (x, y) closer to a
point of S than to any other point of S). We also note that, if we know this
partition, by searching it (i.e., by locating a query point g in a region of this
partition), we could directly solve the NEAREST-NEIGHBOR SEARCH
(Problem P.5). We shall now analyze the structure of this partition of the
plane. Given two points, p; and p;, the set of points closer to p; than to pjis just
the half-plane containing p; that is defined by the perpendicular bisector of
;. Let us denote this half-plane by H(p;, p;). The locus of points closer to p;
than to any other point, which we denote by V(i), is the intersection of N — 1
half-planes, and is a convex polygonal region (see Section 1.3.1) having no
more than N — 1 sides, that is,

V() = Q H(p;,p;).

V(i) is called the Voronoi polygon associated with p;. A Voronoi polygon is
shown in Figure 5.16(a) [Rogers (1964)].12

!2 These polygons were first studied seriously by the emigré Russian mathematician G. Voronoi,
who used them in a treatise on quadratic forms [Voronoi (1908)]. They are also called Dirichlet
regions, Thiessen polygons, or Wigner—Seitz cells. Dan Hoey has suggested the more descriptive
(and impartial) term “proximal polygons.”
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Figure 5.16 (a) A Voronoi polygon; {b) the Voronoi diagram.

These N regions partition the plane into a convex net which we shall refer to
as the Voronoi diagram, denoted as Vor(S), which is shown in Figure 5.16(b).
The vertices of the diagram are Voronoi vertices, and its line segments are
Voronot edges.

Each of the original N points belongs to a unigue Voronoi polygon; thus
if (x, ¥} € ¥(i), then p, is a nearest neighbor of (x,y). The Vorenoi diagram
contains, in a powerful sense, all of the proximity information defined by the
given set.

5.5.1 A catalog of Voronoi properties

In this section we list a number of important properties of the Voronoi
diagram. Although the Voronoi diagram can be defined for any number of
dimensions, our review will refer to the planar case for a two-fold reason: first,
to maintain an immediate link with intuitive evidence; second, to focus the

o
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Voronol Diagrams
Generalizes to other metrics:

Lp'd!St((Xl,YD,(X1&’1)):(|X1'X1|p+|Y1'Y1|p)1/p &
L -dist(vy,v,) = (JAXPHAY[P+HAZP+Aw]P+. . ) 1P 051859

e.9., Lo-dist((Xy,Y1),(X1,Y1))=[X=Xq|HY1-Y4] m

Georgy Voronoi
1868-1908

Euclidean metric (L,) Manhattan metric (L,)
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\Voronoi Diagram Properties

Theorem: AVoronoi cell Is unbounded If |
and only if it’s point is on the convex hull. 5 oriche

1805-1859

Corollary: The convex hull can be computed ~
from the Voronoi diagram in linear/time. m

Georgy Voronoi
1868-1908

—> The Voronoi diagram yields the convex hull “for free”



\Voronoi Diagram Properties

Theorem: Every nearest neighbor of a point LA
defines an edge of the \oronoi diagram. Peter Diriohiet

1805-1859

Corollary: All nearest-neighbors can be compute
from the \Voronol diagram in linear/time. ,

Georgy Voronoi
1868-1908

— Voronol diagram ytelds all nearest-neaighbors “for free”



\Voronoi Diagram Properties

Theorem: A Moronol diagram on n points has
at most 2n-5 vertices and 3n-6 edges.

Peter Dirichlet
1805-1859

-

Georgy Voronoi
1868-1908




\Voronoi Diagram Properties

Theorem: The Voronoi diagram enables nearest <
neighbor search in O(log n) time, using O(n log n) eter birichiet

1805-1859

preprocessing time, and O(n) space, which is optimal,

-
&

Georgy Voronoi
1868-1908

—> Generalizes binary search to 2 dimensions




\Voronoi Diagram Properties
Theorem: Connecting points of neighboring

\oronol diagram cells forms a triangulation.

Peter Dirichlet
1805-1859

Corollary: A Delanuay triangulation can be comp
from the \Voronoi diagram in linear/time.

Georgy Voronoi
1868-1908

Boris Delaunay
1890-1980

— Voronoi diagram yields a triangulation “for free”



\Voronoi Diagram Properties
Theorem: A Delanuay triangulation maximizes

the minimum angle over all triangulations.

Peter Dirichlet

Theorem: A Euclidean minimum spanning tree 1805-1859
IS a subset of the Delanuay triangulation. m
Corollary: A Euclidean minimum spanning tree can |

be computed from Voronoj diagram/n linear time. S
7 /7

o O
S

Georgy Voronoi
1868-1908

Boris Delaunay
1890-1980
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\Voronoi Diagram Properties
Convex hull doable in ©(n log n) time.

Nearest neighbors doable in ©(n log n) time.

Closest pair doable in ©(n log n) time.
Triangulation doable in ©(n log n) time.
Euclidean MST doable in ©(n log n) time.

Convex hull requires ©2(n log n) time.
Nearest neighbors require Q(n log n) time.
Closest pair requires ©(n log n time).
Triangulation requires €(n log n time).
Euclidean MST requires Q(n log n) time).

\oronoi diagram can be used to solve all
of the above problems in O(n log n) time

(and linear time given the \Voronoi diagram).

Peter Dirichlet
1805-1859

-
Georgy Voronoi
1868-1908

Boris Delaunay
1890-1980

Mlchael Shamos
1947-
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Input: set of
Output: Voronoi diagram
* Discrete case / bitmap:
breadth-first waves
from all In parallel
Mark expanded pixels
uniquely for each wave

When waves collide,
freeze all collision points

e Total time 1s O(bitmap size)
 Time 1s independent of #points
* |dentifies pixels, not polygons




Voronol Diagrams

Theorem: Voronol cell of a point is N of all half-planes
Induced by the perpendicular bisectors w.r.t. all other points.




Voronoi Diagram Algorithms
Input: set of n points

Output: Voronol diagram
 Continuous case / polygons:

Compute Voronoi cell by
Intersecting n half-planes

« Time per cell is O(n?)

For each point
Compute Voronoi cell
\oronol diagram Is their union

e Total time is O(n3)
Theorem: N of n half-planes Is

computable in O(n log n) time.
« Total \Voronoi diagram time improves to O(n?log n)



Voronoi Diagram Algorithms

Theorem [Shamos]: Voronoi diagrams in the
plane can be computed in ©(n log n) time.

Idea: divide-and-conquer (like MergeSort)
« Complex merge step

Michael Shamos

Theorem [Fortune]: VVoronoi diagrams in the
plane can be computed in ©(n log n) time.

Steven Fortune

Idea: sweep line using parabolas

* [Fortune] is simpler than [Shamos]
» [Fortune] Generalizes to e.g, disks

Theorem: Voronoi diagrams require
Q(n log n) time to compute.




Voronol Diagram Algorithm [Fortune]

g
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Voronol Diagram Algorithm [Fortune]
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Problem: Solve the following equation for X:
X<
X =2

X
where the stack of exponentiated x’s extends forever.

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations




Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations




Problem: True or false: there are arbitrary long
blocks of consecutive composite integers

(1.e., big “prime deserts™)

Extra Credit: find a short, induction-free proof.

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

» What approaches fail?
« What techniques work and why?} |
* Lessons and generalizations




Problem: Prove that /2 is irrational.

Extra Credit: find a short, induction-free proof.

» What approaches fail? | ‘

T~

FEN Lo ™ (2a )

[rL— -

+ What techniques work and why? €%

* Lessons and generalizations
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Einstein discovers that time is actually money.




Problem: Does exponentiation preserve irrationality?
l.e., are there two Irrational numbers x and y such
that xY is rational?

Extra Credit: find a short, induction-free proof.

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations

¥




Problem: Can an 8x8 board with two opposite
corners missing be tiles with 31 dominoes?

= 31X ?

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations



Problem: 13+ 23+ 33+ 43+ .. +n3="?

- 3 ? M
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Extra Credit:
find a short, geometric,
Induction-free proof.

“Yes, yes, | know that, Sidney ... everybody knows that! ..
But look: Four wrongs squared, minus two wrongs to the
fourth power, divided by this formula, do make a right.”



Problem: Are the complex numbers closed under
exponentiation ? E.g., what is the value of i'?

- | IN My Parer, I USE AN IT MIGHT

" | FUNCTION OVER THE GAUSSIEN IS THIS PAPER
; | INTEGERS To GENERALIZE ™E %‘U""'L"LD"’ L‘?P?r'_g‘” IR 2\; ﬁaﬁﬁh‘é WERE
et Real l -CALLED “FRIENDLY NUMBERS" el BKING YOUR
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