
• Range queries

• Convex hulls

• Lower bounds

• Planar subdivision search

• Line segment intersection

• Convex polygons

• Voronoi diagrams

• Minimum spanning trees

• Nearest neighbors

• Triangulations

• Collinear subsets

Computational Geometry

• “Algorithmic Geometry”

• Supplemental reading:

Computational Geometry,

An Introduction, by Franco Preparata

and Michael Shamos, 1985

• Shamos founded Computational Geometry

in mid-1970’s with his Ph.D. thesis

• Now multiple conferences and journals

• Fundamental for graphics, gaming,

CAD, motion planning, GIS / GPS,

Computational Geometry

Franco PreparataMichael Shamos

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

• Single preprocessing phase, but many queries

• Query time is more critical than preprocessing time

• Range queries generalize to any dimension

Range Queries

1

05

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Applications:

• Databases

• GIS / GPS systems

• Gaming

• CAD

Range Queries

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: first solve the one-dimensional case!

• 1-D “rectangle” is a linear range / segment

• Preprocessing: sort input data

• Range query is a pair of binary searches

• O(log n) time per query

• O(n) space and O(n log n) preprocessing time

Q: Generalization to 2D?

Range Queries

1 2 3 …4 … ni … … j

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: suffices to solve for origin-based rectangles

 four calls to these solves the general case!

Range Queries

9

3

= - - +4 3
1

3

B

|A| + |B| - |AB|

Inclusion-exclusion

principle:
9

4

3

1

A
AB

|AB| =

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Idea: precompute south-west counts for all regions

• Use four binary searches to find four values

• Example: 6 – 1 – 4 + 1 = 2

• O(log n) time per query

• O(n2) space and O(n2) preprocessing time

Range Queries

6

6

3

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 2 2 2

0 1 1 1 2 2 4 4 4

0 1 1 1 2 2 4 5 5

0 1 1 2 3 5 6 7

0 1 1 2 3 4 6 7 8

0 1 1 2 3 5 7 8 9

3

0

1

1

2

2

3

4

Input: n points (vectors), with preprocessing allowed

Output: number of points within any query rectangle

Other possible space-time tradeoffs:

Preprocessing space query

Naïve: O(1) O(1) O(n)

k-d trees: O(n log n) O(n log n) O(log2n)

Clever: O(n2) O(n2) O(log n)

Range Queries

Generalizations:

• Higher dimensions

• General search window (not rectangular)

• Arbitrary objects (segments, polygons, mixed, etc.)

• Counting vs. reporting

• Containment vs. intersection

• Static vs. dynamic

• Online vs. offline

Range Queries

Definition: a polygon is a closed sequence of vertices

Definition: a simple polygon has no self-intersections

Theorem [Jordan]: a simple polygon partitions the

plane into 3 regions: interior, exterior, and boundary

Definition: convex polygon contains all pairwise

segments (i.e. is the intersection of half-planes)

Definition: convex polygon is the intersection of all

the half-planes containing its vertices

Definition: a polytope is a higher-dimensional polygon

Polygons

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

• Single preprocessing phase, but many queries

• Query time is more critical than preprocessing time

• Point location problem generalizes to any dimension

Point Location

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

Applications:

• Mouse clicking

• GIS / GPS systems

• Motion planning

• CAD

• Graphics

• Gaming

Point Location

Input: polygon and query point

Output: is query point interior to polygon?

“Raycasting” algorithm (based on Jordan’s theorem):

• Consider ray from query point to infinity

• Count segment intersections parity:

odd  interior

even  exterior

• O(n) time per query

• O(1) space and O(1) preprocessing time

Point Location

convex non-convex

Input: polygon and query point

Output: is query point interior to polygon?

Convex case:

• O(log n) time per query (binary search)

• O(n) space and O(n log n) preprocessing time

Point Location

Preprocessing:

• Find an interior point p

• Partition into wedges w.r.t p

• Sort wedges by polar angle

Query:

• Find containing wedge

• Test interior/exterior

p

Input: polygon and query point

Output: is query point interior to polygon?

Convex case:

• O(log n) time per query (binary search)

• O(n) space and O(n log n) preprocessing time

Point Location

Preprocessing:

• Find an interior point p

• Partition into wedges w.r.t p

• Sort wedges by polar angle

Query:

• Find containing wedge

• Test interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Point Location

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Worst-case example:

• Θ(n2) space and Θ(n2) preprocessing time worst-case

• O(n) space O(n log n) preproc O(log n) query possible!

Planar Subdivision Search

n/2

n/2

Number of subregions:

≈ (n/2)(n/2) = n2/4 = Θ(n2)

Planar Subdivision Search

A “Simple” Polygon

A “Simple” Polygon

A “Simple” Polygon

A “Simple” Polygon

• Traveling Salesperson Tour

• Optimal is NP-complete

 use TSP heuristics

• Can use Minimum Spanning

Trees (easy to compute)

• Can also use Minimum

Matchings (easy to compute)

• What about colors?

Project Idea: TSP Art

• Convert image to B&W

• Sample image density

• Create pointset

• Run TSP heuristics

• Uncross intersections

Problem: Does every closed simple curve contain

the vertices of an equilateral triangle?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Convex Hulls
Input: set of n points

Output: smallest containing convex polygon

• Generalizes to higher dimensions

• Applications: gaming, collision detection,

graphics, statistics, image recognition, …

Input: set of n points

Output: smallest containing convex polygon

“Jarvis’ march” [1973]:

• h ≤ n convex hull points

• O(n) time per CH point

• O(nh) time, O(n2) worst-case

• Generalizes to higher dimensions

• Parallelizes

Convex Hulls

• Start at point with least x

• Until CH is complete:

• Find next CH point

(with max internal angle)

Input: set of n points

Output: smallest containing convex polygon

“Jarvis’ march” [1973]:

• h ≤ n convex hull points

• O(n) time per CH point

• O(nh) time, O(n2) worst-case

• Generalizes to higher dimensions

• Parallelizes

Convex Hulls

• Start at point with least x

• Until CH is complete:

• Find next CH point

(with max internal angle)

Input: set of n points

Output: smallest containing convex polygon

“Graham’s scan” [1972]:

• O(n log n) time to sort

• O(n) time to scan

• O(n log n) time worst-case

• Does not generalize nor parallelizes

Convex Hulls

• Start at point with least x

• Sort points by polar angles

• Form star-shaped polygon

• Until CH is complete:

Scan next CH candidate

If reflex angle backtrack

Ron Graham

Jarvis’ march compared to Graham’s scan:

• If h < log n  Jarvis’ march wins

• If h > log n  Graham’s scan wins

Expected CH sizes (uniform distributions):

• square: h = O(log n), r-gon: h = O(rlog n)

• circle: h = O(n1/3), sphere: h = O(n1/2)

E.g., Jarvis’ march in a circle: O(n4/3)

Convex Hulls

Ron Graham

O(n log n) O(nh)

Parallel

meta-heuristic:

O(nmin(h,log n))

QuickHull: (like QuickSort)

• O(n log n) expected time

• O(n2) worst-case time

• Generalizes to higher dim

• Parallelizes

Convex Hulls

Find right and left –most points

Partition points along this line

Find points farthest from line

Eliminate all internal points

Recurse on outside 4 regions

Concatenate resulting CHs

MergeHull: (like MergeSort)

Merging two convex hulls:

• T(n) = 2T(n/2) + n = Q(n log n)

• Generalizes to higher dimensions

• Parallelizes M-gon

L-gon

Convex Hulls

Partition points into two sets

Compute MergeHull of each set

Merge the two resulting CHs

Pick point p with least x

Form angle-monotone chains w.r.t. p

Merge chains into angle-sorted list

Run Graham’s scan to form CH CH(L-gon  M-gon)

 (L+M)-gon

Theorem: CH requires Ω(n log n) comparisons.

Proof: Reduce sorting to convex hull:

• Consider arbitrary set of numbers xi to be sorted

• Raise the xi‘s to the parabola (xi, xi
2)

• Compute convex hull of (xi, xi
2)’s

• Sorted order of xi’s is implicit in convex hull

 Sorting takes no longer than convex hull

Convex hull requires Ω(n log n) comparisons

Corollary: Graham’s scan is optimal! O(n log n)

Lower Bound for Convex Hulls

Thomas Cormen Charles Leiserson

Ronald Rivest Clifford Stein

Franco PreparataMichael Shamos

Franco PreparataMichael Shamos

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Point Location

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Input: polygon and query point

Output: is query point interior to polygon?

• O(log n) time per query (two binary searches)

• O(n2) space and O(n2) preprocessing time

Planar Subdivision Search

Preprocessing:

• Sort vertices by x

• Find vertical slices

• Partition into trapezoids

• Sort slice trapezoids by y

Query:

• Find containing slice

• Find trapezoid in slice

• Report interior/exterior

Planar Subdivision Search

Chan’s convex hull algorithm [1996]:

• Assume we know the CH size m=h

• Time for n/m Grahams: (n/m)O(m log m) = O(n log m)

• Time for Jarvis: m(n/m)O(log m) = O(n log m)

• Total time: O(n log m)

Convex Hulls

Partition points into n/m sets of m each

Compute CH of each set using Graham

Compute m steps of Jarvis on CHs

Timothy Chan

n-vertex

convex

polygon

Theorem: given a point and

n-vertex convex polygon,

the tangents can be found in

O(log n) time (binary search).

Convex Hulls

Timothy Chan

Chan’s convex hull algorithm [1996]:

• m=h time is O(n log h)

• If m too large  Graham’s O(n log n) dominates

• If m too small  Jarvis’ O(nh) dominates

Q: How can we pick a good m?

Idea: keep increasing m until m>h

• Start with initial m=2

• If m proves too small (<h) square m,

abandon (!) previous work & run again

• i.e. m=2, 22, 24, 28, 216,…, 22t
≥ h for t ⌈log log h⌉

• Time is O(𝑡=1
⌈log log h⌉

n log 22
𝑡
) = nO(𝑡=1

⌈log log h⌉
2𝑡)

= nO(21+log log h) = O(n log h)

• Chan combines two slower algorithms into a faster one!

• Simple, and optimal in both n and h

n/m sets

of m each

Theorem: The convex hull of a simple

polygon can be found in linear time.

Theorem: The convex hull in 3D can be

found in optimal time Q(n log n).

Theorem: The convex hull in d>3 dim

can be found in time Q(n d+1)/2).

Theorem: Identifying the points of the convex hull

(unsorted) requires Ω(n log n) time (even in 2D).

 Ω(n log n) “Hardness” of determining convex hull

vertices is sorting-independent

Convex Hulls

Graham’s scan

3D Jarvis’ march

Convex Hulls

Theorem: Deciding whether all n input points lie

on their convex hull requires Ω(n log n) time.

 Decision “hardness” of convex hull is worse than

sorting (deciding “sortedness” is O(n) time)

Theorem: Dynamic CH maintenance doable

in O(log n) time per arriving point.

Theorem: Dynamic CH maintenance requires

Ω(log n) worst-case time per each arriving point.

Theorem: Dynamic CH maintenance with deletions

can be done within O(log2n) time per point.

Input: two convex polygons

Output: their intersection (polygon)

• Linear time

= O(total # vertices)

• Generalizes to higher dimensions

• Can be used to intersect many convex polygons

• Generalizes to unbounded convex polygonal regions

• Sort both polygons by x

• Find all vertical slices

• Partition into trapezoids

• ∩ trapezoids in each slice

• Stitch ∩’s together

Convex Polygon Intersection

• Sort both polygons by x

• Find all vertical slices

• Partition into trapezoids

• ∩ trapezoids in each slice

• Stitch ∩’s together

Convex Polygon Intersection
(possibly unbounded)Input: two convex polygons

Output: their intersection (polygon)

• Linear time

= O(total # vertices)

• Generalizes to higher dimensions

• Can be used to intersect many convex polygons

• Works for any combination of bounded & unbounded

Convex Polygon Intersection
Input: k convex polygons (possibly unbounded)

n total number of vertices of all k<n polygons

Output: their intersection (polygon)

• Total time is O(n log k)

• Theorem: W(n log k) is necessary for n convex polygon ∩

• Recursively intersect:

polygons 1,..,k/2

polygons k/2+1,…,k

• Intersect both intersections

k/2k/2

k/8 k/8 k/8 k/8 k/8 k/8 k/8k/8

k/4 k/4k/4k/4

1 1 …1 … 1 11

…

…

 On) total

work / level

log k levels

of recursion

k

Input: convex polygon with n vertices

Output: diameter (farthest pair)

Theorem: computing the diameter (farthest pair)

of a convex polygon requires Ω(n) time.

• Naïve algorithm: examine all
𝑛
2

pairs  O(n2)

• More efficient: for each point, binary-search

polygon for farthest other point  O(n log n)

Convex Polygon Diameter

must look at

every point!

n points on circle

1 point outside circle

“twin peaks”

Input: convex polygon with n vertices

Output: diameter (farthest pair)

Theorem: Diameter is largest distance

between any pair of parallel tangents.

• Linear total time O(n)

• Finds all “antipodal” pairs

• “Rotating calipers” has

lots of applications

Find horizontal max y tangent

Find horizontal min y tangent

Rotate tangents while parallel

Rotate all the way around

Diameter is max separation

Convex Polygon Diameter

Pointset Diameter

Graham’s scan Rotating calipersChan’s CH algorithm

Theorem: The diameter (farthest pair) of a pointset

is equal to the diameter of its convex hull.

Theorem: Finding the diameter of a

pointset requires time Ω(n log n).

Theorem: The diameter of a planar pointset

can be found in optimal time O(n log n).

Theorem: The diameter of a planar pointset

can be found in optimal time O(n log h).



Theorem: The width of a convex polygon

can be found in linear time.

Theorem: The diameter of a simple polygon

can be found in linear time.

Theorem: Element uniqueness (whether any pair

is equal) requires Ω(n log n) time to solve.

Theorem: Element uniqueness (whether any pair

is equal) can be solved in time O(n log n).

Pointset Diameter

Input: set of n points

Theorem: the locus of points closer to any

given point form a convex polygon

• AKA “Dirichlet tessellation”

Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Franco PreparataMichael Shamos

Franco PreparataMichael Shamos

Generalizes to higher dimensions:
Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Generalizes to other metrics:

Lp-dist((x1,y1),(x1,y1))=(|x1-x1|
p+|y1-y1|

p)1/p

Lp-dist(v1,v2) = (|Δx|p+|Δy|p+|Δz|p+|Δw|p+…)1/p

e.g., L1-dist((x1,y1),(x1,y1))=|x1-x1|+|y1-y1|

Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Euclidean metric (L2) Manhattan metric (L1)

Dynamic Voronoi Diagrams

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Voronoi Diagram of State Capitals

Voronoi Diagram of U.S. Airports

Voronoi Furniture

Voronoi Furniture

Voronoi Architecture

Voronoi Architecture

Voronoi Architecture

Voronoi Diagrams in Nature

Voronoi Art



Voronoi Art



Voronoi Art

Voronoi Art

Voronoi Art

Voronoi Art

Theorem: A Voronoi cell is unbounded if

and only if it’s point is on the convex hull.

Corollary: The convex hull can be computed

from the Voronoi diagram in linear time.

The Voronoi diagram yields the convex hull “for free”

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Georgy Voronoi

1868-1908

Theorem: Every nearest neighbor of a point

defines an edge of the Voronoi diagram.

Corollary: All nearest-neighbors can be computed

from the Voronoi diagram in linear time.

Voronoi diagram yields all nearest-neaighbors “for free”

Voronoi Diagram Properties

Peter Dirichlet

1805-1859

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: A Voronoi diagram on n points has

at most 2n-5 vertices and 3n-6 edges.

Voronoi Diagram Properties

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: The Voronoi diagram enables nearest

neighbor search in O(log n) time, using O(n log n)

preprocessing time, and O(n) space, which is optimal.

Generalizes binary search to 2 dimensions

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: Connecting points of neighboring

Voronoi diagram cells forms a triangulation.

Corollary: A Delanuay triangulation can be computed

from the Voronoi diagram in linear time.

Voronoi diagram yields a triangulation “for free”

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Theorem: A Delanuay triangulation maximizes

the minimum angle over all triangulations.

Theorem: A Euclidean minimum spanning tree

is a subset of the Delanuay triangulation.

Corollary: A Euclidean minimum spanning tree can

be computed from Voronoi diagram in linear time.

Voronoi diagram yields an MST “for free”

Thm: Convex hull doable in O(n log n) time.

Thm: Nearest neighbors doable in O(n log n) time.

Thm: Closest pair doable in O(n log n) time.

Thm: Triangulation doable in O(n log n) time.

Thm: Euclidean MST doable in O(n log n) time.

Thm: Convex hull requires Ω(n log n) time.

Thm: Nearest neighbors require Ω(n log n) time.

Thm: Closest pair requires Ω(n log n time).

Thm: Triangulation requires Ω(n log n time).

Thm: Euclidean MST requires Ω(n log n) time).

Thm: Voronoi diagram can be used to solve all

of the above problems in O(n log n) time

(and linear time given the Voronoi diagram).

Voronoi Diagram Properties

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Michael Shamos

1947-

Franco Preparata

Michael Shamos

Boris Delaunay

1890-1980

Georgy Voronoi

1868-1908

Peter Dirichlet

1805-1859

Input: set of n points

Output: Voronoi diagram

• Discrete case / bitmap:

• Total time is O(bitmap size)

• Time is independent of #points n

• Identifies pixels, not polygons

Voronoi Diagram Algorithms

Expand breadth-first waves

from all points in parallel

Mark expanded pixels

uniquely for each wave

When waves collide,

freeze all collision points

Theorem: Voronoi cell of a point is ∩ of all half-planes

induced by the perpendicular bisectors w.r.t. all other points.

Voronoi Diagrams

Voronoi Diagram Algorithms

Compute Voronoi cell by

intersecting n half-planes

Input: set of n points

Output: Voronoi diagram

• Continuous case / polygons:

• Time per cell is O(n2)

• Total time is O(n3)

Theorem: ∩ of n half-planes is

computable in O(n log n) time.

• Total Voronoi diagram time improves to O(n2 log n)

For each point

Compute Voronoi cell

Voronoi diagram is their union

Theorem [Shamos]: Voronoi diagrams in the

plane can be computed in O(n log n) time.

Idea: divide-and-conquer (like MergeSort)

• Complex merge step

Theorem [Fortune]: Voronoi diagrams in the

plane can be computed in O(n log n) time.

Idea: sweep line using parabolas

• [Fortune] is simpler than [Shamos]

• [Fortune] Generalizes to e.g, disks

Theorem: Voronoi diagrams require

Ω(n log n) time to compute.

Voronoi Diagram Algorithms

Michael Shamos

Steven Fortune

Voronoi Diagram Algorithm [Fortune]

Voronoi Diagram Algorithm [Fortune]

Voronoi Diagram Algorithm [Fortune]

X = 2
X

X
X

X

Problem: Solve the following equation for X:

where the stack of exponentiated x’s extends forever.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: True or false: there are arbitrary long

blocks of consecutive composite integers

(i.e., big “prime deserts”)

Extra Credit: find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that is irrational.

Extra Credit: find a short, induction-free proof.

2

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Does exponentiation preserve irrationality?

i.e., are there two irrational numbers x and y such

that xy is rational?

Extra Credit: find a short, induction-free proof.

Problem: Can an 8x8 board with two opposite

corners missing be tiles with 31 dominoes?

= 31 x ?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: 13 + 23 + 33 + 43 + …+ n3 = ?

?i
1

3 


n

i

Extra Credit:

find a short, geometric,

induction-free proof.

Problem: Are the complex numbers closed under

exponentiation ? E.g., what is the value of ii?

